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Nonlinear heat transport in a dilute gas in the presence of gravitation
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In this paper we evaluate corrections to the Navier-Stokes constitutive equations induced by the action of a

gravitational fieldg52gẑ in a gas subjected to a thermal gradient parallel to a field with no convection. The
analysis is performed from an exact perturbation solution of the Boltzmann equation for Maxwell molecules
through second order in the field. The reference state~zeroth-order approximation! corresponds to the exact
solution of the Boltzmann equation in the pure planar Fourier flow, which holds for arbitrary values of the
thermal gradient. The results show that the pressure tensor becomes anisotropic, so that the momentum flux
along the field direction is enhanced: (Pzz2p)/p'14.4(p22h2g] lnT/]z)2. In addition, the heat flux increases
~decreases! with respect to its Navier-Stokes value when the gas is heated from above~below!:
qz /qz

NS21'20.7(p22h2g] lnT/]z). @S1063-651X~97!01812-6#

PACS number~s!: 51.10.1y, 05.20.Dd, 05.60.1w, 47.50.1d
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I. INTRODUCTION

One of the most interesting and widely studied proble
in fluid mechanics is the so-called Rayleigh-Be´nard flow@1#.
The physical situation is that of a fluid enclosed between
fixed parallel plates kept at different temperatures under
influence of a constant gravitational field perpendicular
the plates. The problem is characterized by a few dimens
less numbers. The most relevant one is the Rayleigh num

Ra5
ar2cp

kh
gS 2

]T

]zDL4, ~1.1!

wherea is the expansion coefficient,r is the mass density
cp is the specific heat at constant pressure,k is the thermal
conductivity, h is the shear viscosity,g is the acceleration
due to gravity,]T/]z is the thermal gradient~the z axis is
chosen orthogonal to the plates, opposite to gravity!, andL is
the separation between the plates. One can also introdu
Froude number as

Fr5S cpT

gL D 1/2

. ~1.2!

When the fluid is heated from below, the Rayleigh numbe
positive. In that situation, if Ra exceeds a critical val
Rac.1700, the fluid at rest becomes unstable and convec
appears.

In this paper, we are interested in studying the station
Rayleigh-Bénard flow in the absence of convection, name
for Ra,Rac . In that case, the balance equations for mom
tum and energy imply

]

]z
Pzz52rg, ~1.3!

]

]z
qz50, ~1.4!
561063-651X/97/56~6!/6729~6!/$10.00
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whereP is the pressure tensor, andq is the heat flux vector.
If one assumes the applicability of the Navier-Stokes con
tutive equations, namely,

Pi j
NS5pd i j , ~1.5!

qz
NS52k

]

]z
T, ~1.6!

the balance equations lead to the hydrodynamic profiles

]

]z
p52rg, ~1.7!

]

]zS k
]

]z
TD50. ~1.8!

This level of description is adequate for a wide range
values of the thermal gradient and the gravitational field@2#.
On the other hand, if those parameters are sufficiently la
deviations from the Navier-Stokes approximations can be
pected. The aim of this work is to evaluate these deviati
by using kinetic theory methods.

As a prototype fluid we consider a dilute monatomic g
which lends itself to a detailed description by means of
Boltzmann equation@3#. In a rarefied gas, the mean free pa
l, is an important distance scale parameter. Its value rela
to the distanceL provides the Knudsen number, Kn5l/L.
By using the mean free path and the thermal veloc
(kBT/m)1/2, wherekB is the Boltzmann constant andm is the
mass of a particle, one can define a reduced thermal grad

e5
l

T

]

]z
T, ~1.9!

and a reduced gravity acceleration
6729 © 1997 The American Physical Society
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g* 5
l

kBT/m
g. ~1.10!

In terms of the above quantities, the Rayleigh and Fro
numbers become

Ra5 3
2 ~2e!g* Kn24, ~1.11!

Fr5S 5

2

Kn

g*
D 1/2

, ~1.12!

where we definedl asl5 3
2 hAkBT/m/p, and took into ac-

count that in a dilute monatomic gasa51/T, k5 3
2 cph, and

cp5 5
2 kB /m. A necessary condition for a hydrodynamic d

scription is Kn!1. This allows the existence of a ‘‘bulk’
region, where the properties are rather insensitive to the
tails of the interactions of the particles with the boundari
In order to obtain the first few corrections to the Navie
Stokes equations due to gravity, we will assume t
g[g* e!1 ~so that Ra,Rac), and perform a perturbation
expansion in powers ofg. We will restrict ourselves to the
case of Maxwell molecules, i.e., particles interacting via
potentialV(r )}r 24. The reason is twofold. First, the veloc
ity moments of the nonlinear Boltzmann collision opera
can be expressed as combinations of the moments of
distribution function @3#. Second, the Boltzmann equatio
admits an exact solution for the pure Fourier flow~i.e., in the
absence of gravity! with arbitrary thermal gradients@4#. In
this solution, the Navier-Stokes equations are exactly v
fied, even for large values ofe. As a consequence, deviation
associated withgÞ0 are only due to the presence of gravit

II. DESCRIPTION OF THE PROBLEM
FROM THE BOLTZMANN EQUATION

Let us consider a dilute gas described by the Boltzm
equation@3#

]

]t
f 1v•¹f 1

F

m
•

]

]v
f 5J@ f , f #. ~2.1!

Here, f (r ,v,t) is the one-particle distribution function,F is
an external force, andJ@ f , f # is the nonlinear Boltzmann col
lision operator. The densities of the conserved quanti
~mass, momentum, and energy!, as well as their fluxes, ar
given as the first few velocity moments off . In particular,

n5E dv f ~2.2!

is the local density,

u5
1

nE dv vf ~2.3!

is the local flow velocity,

T5
m

3nkB
E dv~v2u!2f ~2.4!

is the local temperature,
e

e-
.

t

a

r
he

i-

n

s

P5mE dv~v2u!~v2u! f , ~2.5!

is the pressure tensor, and

q5
m

2 E dv~v2u!2~v2u! f ~2.6!

is the heat flux vector.
We are interested in a stationary state with spatial va

tion only along a given direction~say z), and a constant
external fieldF52mgẑ along that direction. In addition, a
stated in Sec. I, we assume that there is no convection,
u50, and that the particles interact through the Maxw
potential. For this interaction, the collision rate appearing
the collision operator is independent of the velocity. For t
sake of clarity, let us introduce dimensionless quantities.
do so, we choose anarbitrary point z0 in the bulk region,
and take the quantities at that point~denoted by a subscrip
0! as reference units. Therefore, we defineT* [T/T0,
p* [p/p0, v* [v/v0, f * [n0

21v0
3f , andg* [gl0 /v0

2, where
p5nkBT is the hydrostatic pressure, andv0[(kBT0 /m)1/2 is
a thermal velocity. In the case of the spatial variablez, it is
convenient to rescale it in a nonlinear way that takes i
account the local dependence of the density. Conseque
we define

s5
1

n0l0
E

z0

z

dz8n~z8!. ~2.7!

Under the above conditions, Eq.~2.1! becomes

S vz* ]s2g*
T*

p*

]

]vz*
D f * 5

n0l0

v0

T*

p*
J@ f * , f * #, ~2.8!

where]s[]/]s. In Eq. ~2.8!, we made use of the propert
J@ f , f #5n0

2v0
23J@ f * , f * #, which only holds for Maxwell

molecules.
According to the geometry of the problem, the releva

velocity moments are defined as

Mab5E dv* v* 2avz*
b f * . ~2.9!

In particular,M1053p* and M005p* /T* . The Boltzmann
equation~2.8! is then formally equivalent to the following
hierarchy of moment equations:

]sMa,b111g*
T*

p*
~bMa,b2112aMa21,b11!5Jab ,

~2.10!

where

Jab5
n0l0

v0

T*

p*
E dv* v* 2avz*

bJ@ f * , f * #. ~2.11!

In the case of Maxwell molecules, the collisional momen
Jab are bilinear combinations of momentsMa8b8 of degree
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2a81b8 less than or equal to 2a1b. Through fourth de-
gree, their explicit expressions are@5–7# J005J015J1050,
and

J0252 3
2 ~M022p* !, ~2.12!

J1152M11, ~2.13!

J0352 9
4~M032

1
3 M11! , ~2.14!

J2052M202
T*

p*
F3

2
~M022p* !2215p* 2G , ~2.15!

J1252 7
4 M121

1
4 M202

T*

p*
~M02

2 2 15
4 p* M022

9
4 p* 2! ,

~2.16!

J0452vM041
3

14 ~4v27!M121
3

70 ~722v!M20

2
3

70

T*

p*
@4~9v222!M02

2 23~24v247!p* M02

23~41212v!p* 2#, ~2.17!

wherev.2.8097, and we have taken into account the sy
metries of the problem.

Equation~2.8! admits as a trivial solution theequilibrium
state characterized byT* 51 and p* 512g* s. The latter
equation is nothing but the barometric formu
p(z)5p0exp@2mg(z2z0)/kBT#. On the other hand, in the ab
sence of gravitation (g50), Eq. ~2.8! has anexactsolution
@4,8# characterized by a constant pressure,p* 51, and a
‘‘linear’’ temperature profile

T* 511e0s, ~2.18!

wheree0 is a constant. On the other hand, the reduced th
mal gradient defined in Eq.~1.9! is a local quantity, namely
e(z)5e0AT0 /T(z), where we have taken into account th
l}n21T1/2 for Maxwell molecules. It must be remarked th
the solution applies to arbitrary values ofe0. The velocity
momentsMab arepolynomialsin s of degreea1I (b/2)21,
whereI () denotes the integer part, exceptM005(11e0s)21.
Their explicit expressions for 2<2a1b<5 are@6–8#

M1053, M0251, ~2.19a!

M11525e0 , M03523e0 , ~2.19b!

M20515~11e0s!170e0
2 , M1255~11e0s!134e0

2 ,

M0453~11e0s!1
162

7
e0

2 , ~2.19c!

M215270~11e0s!e02S 4652

9
1

112

v8
D e0

3 , ~2.19d!

M135242~11e0s!e02F4652

15
1

336

5v8
1

216

5v9
S 8

7
1

1

v8
D Ge0

3 ,

~2.19e!
-

r-

t

M055230~11e0s!e02F4652

21
1

48

v8
1

48

v9
S 8

7
1

1

v8
D Ge0

3 ,

~2.19f!

where v8.2.0133 and v9.2.3555. The fact that
M11525e0 means that the Fourier law, Eq.~1.6!, holds
even for large thermal gradients. A similar conclusion is o
tained from an exact solution of the Bhatnagar-Gross-Kro
~BGK! model for general interactions@9#. Notice that Eq.
~2.18! leads to (]/]z)2T250, which is consistent with Eq
~1.8!. The nonlinear relationship betweens andz is, accord-
ing to Eq.~2.7!, s5s(0)(z), where

s~0!~z!5e0
21F S 112

e0

l0
~z2z0! D 1/2

21G . ~2.20!

As stated in Sec. I, the motivation for this paper was
analyze the influence of gravitation on the profiles and tra
port properties of the above steady Fourier flow. The pr
ence of the term proportional tog* in Eq. ~2.10! complicates
the solution of the hierarchy enormously, since the mome
are no longer just polynomials ins. However, from a prac-
tical point of view the value of the gravity acceleration
sufficiently small as to justify a perturbation analysis. Mo
specifically, we will carry out a perturbation expansion
powers ofg[e0g* :

f * 5 f ~0!1 f ~1!g1 f ~2!g21•••, ~2.21!

where the reference statef (0) represents the pure steady Fo
rier flow corresponding to the actual values of pressure, te
perature, and thermal gradient at the point of interestz5z0.
Analogously,

Mab5Mab
~0!1Mab

~1!g1Mab
~2!g21•••, ~2.22!

p* 5p~0!1p~1!g1p~2!g21•••, ~2.23!

T* 5T~0!1T~1!g1T~2!g21•••, ~2.24!

where the first few momentsMab
(0) are given by Eqs.~2.19!,

p(0)51, and T(0)511e0s. By definition, p(k)(0)
5T(k)(0)5]T(k)/]sus5050 for k>1. It must be emphasized
that the terms of ordergk arenonlinear functions ofe0, and
no restriction as to the order one0 exists.

III. PERTURBATION EXPANSION

In this section we obtain the hydrodynamic profilesp(k)

andT(k), and the fluxesM02
(k) and M11

(k) through orderk52.
Inserting Eqs.~2.22!–~2.24! into Eq. ~2.10!, one obtains

]sMa,b11
~k! 1

1

e0
(

k850

k21 S T*

p*
D ~k8!

~bMa,b21
~k212k8!12aMa21,b11

~k212k8!!

5Jab
~k! . ~3.1!

In particular,
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]sMa,b11
~1! 1

1

e0
~11e0s!~bMa,b21

~0! 12aMa21,b11
~0! !5Jab

~1! ,

~3.2!

]sMa,b11
~2! 1

1

e0
$~11e0s!~bMa,b21

~1! 12aMa21,b11
~1! !

1@T~1!2~11e0s!p~1!#~bMa,b21
~0! 12aMa21,b11

~0! !%

5Jab
~2! . ~3.3!

In these equations, one needs to take into account
M00

(1)5(T(0)p(1)2T(1))/T(0)2, M00
(2)5@T(1)22T(0)(T(1)p(1)

1T(2))#/T(0)3, and M10
(k)53p(k). Inspection of these equa

tions shows that the polynomial structure of the solution c
responding to the pure Fourier flow is extended to the so
tion of orderk. More specifically,T(k) is a polynomial ins of
degreek11, andMab

(k) , 2a1b>2, is a polynomial of de-
greea1I (b/2)1k21:

T~k!~s!5 (
l 50

k21

T~k,l !sk112l , ~3.4!

Mab
~k!5 (

l 50

a1I ~b/2!1k21

mab
~k,l !sa1I ~b/2!1k212l , ~3.5!

where the coefficients are so far unknown. According to E
~3.4! and~3.5!, the left-hand side of Eq.~3.1! is a polynomial
of degreea1I @(b21)/2#1k21, while the right-hand side
is a polynomial of degreea1I (b/2)1k21. Consequently,
if b5even, the coefficient ofa1b/21k21 on the right-
hand side of Eq.~3.1! must vanish, and this allows one t
obtain the coefficientsma8b8

(k,0) for 2a81b852a1b. The
general solution scheme then proceeds as follows:

$md
~k,l !%→$md21

~k,l !%→$md22
~k,l 11!%→$md23

~k,l 11!%→•••,
~3.6!

where $md
(k,l )% denotes the set of coefficien

$mab
(k,l ) ;2a1b5d%, and d is even in the first set of Eq

~3.6!. Consequently, in order to determine completelyMab
(k)

one needs to make use of the collisional momentsJa8b8 with
2a81b8<2(2a1b1k21). As a matter of fact, to obtain
the heat flux to second order, one needs to know the c
sional moments through the eighth degree. Since, to the
of our knowledge, only the collisional moments through t
fifth degree are given in the literature@5#, here we have used
a recent evaluation of moments of higher degree@10#.

Let us first consider the hierarchy~3.2!. Making
(a,b)5(0,1), one obtainsm02

(1,0)521/e0, which is equiva-
lent to Eq. ~1.3!. Next, if (a,b)5(1,0), one obtains
m11

(1,0)50, which is equivalent to Eq.~1.4!. The first non-
trivial result is obtained by making (a,b)5(0,2). In this
case, one hasm10

(1,0)53m02
(1,0)523/e0 and

m02
~1,1!52 2

3 m03
~1,0! , ~3.7!

where we have taken into account thatm10
(k,k)50. Now we

take (a,b)5(1,1),(0,3), which yields
at

-
-

s.

li-
st

m12
~1,0!52 5

2 , ~3.8!

m03
~1,0!52 4

3~11 2
3 m04

~1,0!! . ~3.9!

Next we take (a,b)5(2,0), ~1,2!, and~0,4!:

T~1,0!2 1
15m20

~1,0!2150, ~3.10!

T~1,0!1 1
20m20

~1,0!2 1
8 50, ~3.11!

T~1,0!1
722v

70
m20

~1,0!2
v

3
m04

~1,0!2
20v27

28
50. ~3.12!

The solution isT(1,0)5 1
2, m20

(1,0)52 15
2 , andm04

(1,0)52 3
2. Sub-

stitution into Eqs.~3.9! and ~3.7! gives m03
(1,0)5m02

(1,1)50.
This completes the determination of the second-degree
ments to first order.

To determine the heat flux to first order, one needs
plicit knowledge of the sixth-degree collisional momen
Furthermore, the eighth-degree collisional moments
needed in the evaluation of the heat flux to second order.
algebra is straightforward but rather tedious and here
quote only the final results:

p* 512
1

e0
sg1O~g3!, ~3.13!

M02512
1

e0
sg1

128

45
g21O~g3!, ~3.14!

T* 511e0s1 1
2 s2g2s2S 468

45
2

1

3e0
sDg21O~g3!,

~3.15!

M11525e0F11
46

5
g1S 12

5e0
2

1503.7D g21O~g3!G ,

~3.16!

M03523e0F11
206

21
g1S 164

63e0
2

1
64

45e0
s1550.3D g2

1O~g3!G . ~3.17!

Equation~3.13! shows that Eq.~1.7! is still valid to second
order. Nevertheless,Pi j ÞPi j

NS5pd i j to that order. More spe-
cifically, Eq. ~3.14! implies that

Pzz2p

p
5

128

45
g21O~g3!. ~3.18!

Although we have used the space variables as mathemati-
cally convenient, let us go back to the actual space coo
natez. The nonlinear relationship betweens and z can be
obtained from Eqs.~2.7!, ~3.13!, and~3.15!:

s~z!5s~0!~z!1s~1!~z!g1s~2!~z!g21O~g3!, ~3.19!

wheres(0)(z) is given by Eq.~2.20!, and
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s~1!~z!52
1

2e0
s~0!2, s~2!~z!5

104e0
215e0s~0!15

30e0
2~11e0s~0!!

s~0!3.

~3.20!

Substituting Eq.~3.19! into Eq. ~3.15!, we obtain the tem-
perature profile

T~z!5T0H F112
e0

l0
~z2z0!G1/2

2
104

15

F112
e0

l0
~z2z0!G3/2

2123
e0

l0
~z2z0!

e0
2F112

e0

l0
~z2z0!G1/2 g2

1O~g3!J . ~3.21!

Thus, the deviation from the profile given by Eq.~1.8! is of
second order, namely,

]

]zS k
]

]z
TD U

z5z0

52
104

5

k0T0

l0
2

g21O~g3!. ~3.22!

On the other hand, sinceM11/(25e0)5qz /qz
NS, Eq. ~3.16!

shows that the correction to the Fourier law, Eq.~1.6!, is of
first order. The results predict that when one heats fr
above~i.e., e0.0, so thatg.0), the gravitational field pro-
duces an enhancement of the heat flux with respect to
Navier-Stokes value; the opposite effect occurs when
heats from below, at least forugu!1.

Following the same procedure, one might obtain hig
correction terms. However, not only the algebra involv
becomes more and more complicated, but its applicab
may be limited by the possible asymptotic character of
series. For illustrative purposes, it is useful to consider P´
approximants@11#. In Fig. 1 we plot the ratioqz /qz

NS, taking
the Pade´ approximants (1,1) and (0,2) of Eq.~3.16!, at
g* 50.01 in the range20.015<g<0.015. There is a region
(ugu&0.01) where both curves practically overlap. This
lows us to estimate that atg* 50.01 the heat flux increase
by a 12% with respect to its Navier-Stokes value if one he
from above withe51, while it decreases by a 7% if on
heats from below withe521.

IV. DISCUSSION

In this paper we have investigated the influence of grav
on the heat transport across a fluid in a slab, in the absen
convection. This means a restriction to values of the R
leigh number less than the critical value, Ra,Rac.1700.
Usually, one adopts a hydrodynamic description in the se
that g explicitly appears in the balance equations, but it
assumed that the constitutive relations between fluxes
gradients are those of Navier-Stokes; thus only the hydro
namic profiles are affected by gravity. Nevertheless, a
matter of principle, a certain deviation from the Navie
its
e

r

y
e
e

-

ts

y
of
-

se
s
nd
y-
a

Stokes equations can be expected. The evaluation of su
deviation in a dilute gas of Maxwell molecules was the ma
motivation of this paper.

We have solved the steady nonlinear Boltzmann equa
by means of a perturbation expansion around the pure F
rier flow state~i.e., g50). In the latter state, the Navier
Stokes equations areexact, even for arbitrary values of the
thermal gradient@4#. Consequently, the deviations found a
exclusively due to the action of gravity. The main results a
summarized by Eqs.~3.16!, ~3.18!, and ~3.21!. While the
anisotropy of the pressure tensor and the correction to
temperature profile are of second order, the correction to
heat flux is of first order, so that the latter depends on
sign of the thermal gradient. This implies an inhibition~en-
hancement! of the heat transport when the gas is heated fr
below ~above!.

Although our results have been obtained for Maxw
molecules, we expect that most of them can be extende
other interaction potentials when the proper temperature
pendence of the thermal conductivity is taken into accou
For instance, Eqs.~3.16!, ~3.18!, and ~3.22! can still hold,
except for a change in the numerical coefficients. This
pectation is based on the fact that Monte Carlo simulati
of the Boltzmann equation for hard spheres have confirm
the reliability of the solutions for Maxwell molecules i
cases such as the shear flow@12#, the pure Fourier flow@13#,
and the Poiseuille flow@14#.

Finally, it is obvious that the effects analyzed here a
practically irrelevant for gases under terrestrial conditio
~for instance, in the case of air at room temperatu
g* ;10211). The same can be said of recent numerical so
tions of the Boltzmann equation showing the existence of
Rayleigh-Bénard instability in rarefied gases@15#. Neverthe-
less, apart from its theoretical interest, the issue addresse
this paper may be useful in more complex systems, suc
viscous liquids or low-density granular media.
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FIG. 1. Plot of the ratioqz /qz
NS as a function ofg at g* 50.01.

The solid and dashed lines are the Pade´ approximants (1,1) and
(0,2), respectively, derived from Eq.~ 3.16!.
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