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Nonlinear heat transport in a dilute gas in the presence of gravitation
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In this paper we evaluate corrections to the Navier-Stokes constitutive equations induced by the action of a
gravitational fieldg= — gz in a gas subjected to a thermal gradient parallel to a field with no convection. The
analysis is performed from an exact perturbation solution of the Boltzmann equation for Maxwell molecules
through second order in the field. The reference stageoth-order approximatigrcorresponds to the exact
solution of the Boltzmann equation in the pure planar Fourier flow, which holds for arbitrary values of the
thermal gradient. The results show that the pressure tensor becomes anisotropic, so that the momentum flux
along the field direction is enhanced®,g— p)/p~14.4(p~ 2%°gd InT/d2)% In addition, the heat flux increases
(decreases with respect to its Navier-Stokes value when the gas is heated from alimslew):

0, /qNS—1~20.7(p 29?94 InT/dz). [S1063-651%97)01812-§

PACS numbsg(s): 51.10+y, 05.20.Dd, 05.606tw, 47.50+d

I. INTRODUCTION whereP is the pressure tensor, angds the heat flux vector.
If one assumes the applicability of the Navier-Stokes consti-
One of the most interesting and widely studied problemdutive equations, namely,
in fluid mechanics is the so-called Rayleighred flow[1].

The physical situation is that of a fluid enclosed between two Pi°=ps;, (1.5
fixed parallel plates kept at different temperatures under the

influence of a constant gravitational field perpendicular to P

the plates. The problem is characterized by a few dimension- quS: —k—T, (1.6
less numbers. The most relevant one is the Rayleigh number 9z

) . . i
Ra ap Cpg< a ﬂ) e 1) the balance equations lead to the hydrodynamic profiles
K7 Jz
J
wherea is the expansion coefficienp, is the mass density, Ep: P9 1.7

Cp is the specific heat at constant pressurés the thermal
conductivity, 7 is the shear viscosityg is the acceleration
due to gravity,dT/dz is the thermal gradientthe z axis is
chosen orthogonal to the plates, opposite to gravitgdL is

the separation between the plates. One can also introduce a . o ]
Froude number as This level of description is adequate for a wide range of

values of the thermal gradient and the gravitational field
CcpT 12 On the other hand, if those parameters are sufficiently large,
Fr= (g_L) . (1.2 deviations from the Navier-Stokes approximations can be ex-
pected. The aim of this work is to evaluate these deviations
When the fluid is heated from below, the Rayleigh number iy using kinetic theory methods.
positive. In that situation, if Ra exceeds a critical value As a prototype fluid we consider a dilute monatomic gas,
Ra.= 1700, the fluid at rest becomes unstable and convectiowhich lends itself to a detailed description by means of the
appears. Boltzmann equatiof3]. In a rarefied gas, the mean free path,
In this paper, we are interested in studying the stationary:, is an important distance scale parameter. Its value relative
Rayleigh-Bmard flow in the absence of convection, namely,to the distancd. provides the Knudsen number, Kn\/L.

for Ra<Ra,. In that case, the balance equations for momenBY using the mean free path and the thermal velocity
tum and energy imply (kg T/m)Y2, wherekg is the Boltzmann constant amdis the

mass of a particle, one can define a reduced thermal gradient

d d
E(KET>=0. (18)

J
Epzz: — P9, (1.3 N J
€= ? ET' (19)
d
quz 0, (1.4 and a reduced gravity acceleration
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A
g*:mg_ (1.120 szf dv(v—u)(v—u)f, (2.5

In terms of the above quantities, the Rayleigh and Froudés the pressure tensor, and
numbers become

m
Ra=3(—€)g*Kn %, (1.11) q= gf dv(v—u)*(v—u)f (2.6)
1/2 .
Ere 5 Kn 112 S the heat flux vector.
2 gt ' We are interested in a stationary state with spatial varia-

tion only along a given directiorisay z), and a constant

where we defined as\=37\kgT/m/p, and took into ac- external fieldF= —mgz along that direction. In addition, as
count that in a dilute monatomic gas=1/T, K=§Cp77, and stated in Sec. I, we assume t_hat there is no convection, i.e.,
5 . , u=0, and that the particles interact through the Maxwell
cp=2ks/m. A necessary condition for a hydrodynamic de- yotential. For this interaction, the collision rate appearing in
scription is Kn<1. This allows the existence of a “bulk” the collision operator is independent of the velocity. For the
region, where the properties are rather insensitive to the degke of clarity, let us introduce dimensionless quantities. To
tails of the interactions of the particles with the boundariesqq 5o, we choose aarbitrary point z, in the bulk region,
In order to obtain the first few corrections to the Navier- gnq take the quantities at that poimenoted by a subscript
Stokes equations due to gravity, we will assume thab) as reference units. Therefore, we defiid=T/T,,
y=g*e<1 (so that RaRa.), and perform a perturbation p* =p/po, V¥ =Vlv,, f*Enalvgf, andg*Eg)\ole, where
expansion in powers of. We will restrict ourselves to the p=nkgT is the hydrostatic pressure, ang= (kg To/m)Y2is

case Qf Maxwell4m0|ecules, i.e:, particles irlteracting via 43 thermal velocity. In the case of the spatial variahld is
potentialV(r)r-". The reason is twofold. First, the veloc- convenient to rescale it in a nonlinear way that takes into

ity moments of the nonIinea_r Bqltzmann collision operator ,.ount the local dependence of the density. Consequently,
can be expressed as combinations of the moments of the, jefine

distribution function[3]. Second, the Boltzmann equation
admits an exact solution for the pure Fourier flgwe., in the

absence of gravijywith arbitrary thermal gradient$4]. In s=
this solution, the Navier-Stokes equations are exactly veri- Noto
fied, even for large values ef As a consequence, deviations
associated withy# 0 are only due to the presence of gravity.

Zdz’n(z’). 2.7

)

Under the above conditions, E(.1) becomes

T™ 0 Noho T*
Il. DESCRIPTION OF THE PROBLEM vids—g* — f*= —J[f*,f*], (2.9
FROM THE BOLTZMANN EQUATION p* dvj Vo p*

Let us consider a dilute gas described by the Boltzmanq\,here(ySE dlds. In Eq. (2.8), we made use of the property

equation(3] J[f,f1=ndvy 3J[f*,f*], which only holds for Maxwell
P F g molecules.
Ef+v-Vf+ E'a_vf:‘][f’f]' (2.9 According to the geometry of the problem, the relevant

velocity moments are defined as

Here, f(r,v,t) is the one-particle distribution functiof, is
an external force, andl f,f] is the nonlinear Boltzmann col- M“ﬁ:f dv*u* ZHU;Bf*_ (2.9
lision operator. The densities of the conserved quantities

(mass, momentum, and enejggs well as their fluxes, are

H — * — Nn* *
given as the first few velocity moments bf In particular, " Particular,Mo=3p™ and Mgo=p™/T*. The Boltzmann

equation(2.8) is then formally equivalent to the following

hierarchy of moment equations:
nzf dv f (2.2
*
is the local density, IsMa g1t 0" p_*('BMa,B*l‘l'Z“Ma*1ﬂ+l):‘]aﬁ'
1 (2.10
u= —f dvvf (2.3
n where
is the local flow velocity, Noho T* ,
Jap=—— — | dv*u*2*}A[f* f*].  (2.1D
: J d 2f 2 vo P Z
T= Tkg V(V— U) ( 4)

In the case of Maxwell molecules, the collisional moments
is the local temperature, J.p are bilinear combinations of momerité, 5 of degree
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2a'+ B’ less than or equal to@+ B. Through fourth de-
gree, their explicit expressions aé—7] Jgg=Jo1=J10=0,

and
Joo=—3(Mgp—p*), (2.12
Ji=—Myy, (2.13
Jos=—7(Moz—3Mu1), (2.14
T3
Jzo:_Mzo_p_* 5 (Mo~ p*)?—15p*?|, (2.19

T*
J1= = Mo+ GMpo— p—*(Mgz_%p*Moz_%p*z),
(2.19
Joa= — oMost 5 (4o — 7)Mo+ 76(7—2w)Myg
3 *
—%p—*[4(9w—22)M§2—3(24w—47)p*M02

—3(41-12w)p*?], (2.17

6731
M= — 3014 egsye, | 1652, 48, 48(8 1) .
= - €S)eEg— | (a7 T — T — | 5T — | |€p,
05 0 0 21 o' " 7 o' 0
(2.199

where w’'=2.0133 and »"=2.3555. The fact that
M11=—5€, means that the Fourier law, E@1.6), holds
even for large thermal gradients. A similar conclusion is ob-
tained from an exact solution of the Bhatnagar-Gross-Krook
(BGK) model for general interaction®]. Notice that Eq.
(2.18 leads to ¢/9z)?T?=0, which is consistent with Eq.
(1.8). The nonlinear relationship betwesrandz is, accord-

ing to Eq.(2.7), s=s%(z), where

sO(2)=¢"

(2.20

1/2
€0

(1+2—(z—zo)) —-1y.
Ao

As stated in Sec. |, the motivation for this paper was to
analyze the influence of gravitation on the profiles and trans-
port properties of the above steady Fourier flow. The pres-
ence of the term proportional g* in Eq. (2.10 complicates
the solution of the hierarchy enormously, since the moments
are no longer just polynomials in However, from a prac-
tical point of view the value of the gravity acceleration is

wherew=2.8097, and we have taken into account the symsufficiently small as to justify a perturbation analysis. More

metries of the problem.

Equation(2.8) admits as a trivial solution thequilibrium
state characterized by*=1 and p*=1—g*s. The latter
formula
p(2) = poexd —mg(z—zy)/kgT]. On the other hand, in the ab-
sence of gravitationg=0), Eg. (2.8 has anexactsolution
[4,8] characterized by a constant pressyp&,=1, and a

equation is nothing but the barometric

“linear” temperature profile

T*=1+ €9S,

(2.18

whereeg, is a constant. On the other hand, the reduced ther-
mal gradient defined in Eq1.9) is a local quantity, namely,
€(2)=€p\To/T(2), where we have taken into account that
Aoen~ T2 for Maxwell molecules. It must be remarked that
the solution applies to arbitrary values &f. The velocity

momentsM ,; arepolynomialsin s of degreea +1(8/2) -1,
wherel () denotes the integer part, excépo=(1+ €,3) L.
Their explicit expressions for22a+ <5 are[6-§]

M10=3, Mg=1, (2.199

M1;=—5€, Mgz=— 3¢, (2.199

Moo= 15(1+ €os) + 70e5, M1,=5(1+ €ps) + 34e,

162 ,
Mo4:3(1+ Eos)+ 760, (219()
4652 112 .
M212_7(X1+€05)60_ T‘l‘_, €0, (219d
w
Mo — 421+ eg8) g | 2052, 336 216(8 1) .
ke €S)eg— | =T —+—|+—| €,
13 0 0 15 50’ 5" 7 o' 0
(2.19¢

specifically, we will carry out a perturbation expansion in
powers of y=¢€yg*:

fr=fO 4Dy £2524 ... (2.21
where the reference stat€ represents the pure steady Fou-
rier flow corresponding to the actual values of pressure, tem-

perature, and thermal gradient at the point of interesy,,.
Analogously,

M= MO My MG, 222

where the first few moments! Eyo,g) are given by Eqs(2.19,
p@=1, and T®=1+¢,s. By definition, p®(0)
=T®(0)=9T®W/ss|s_q=0 fork=1. It must be emphasized
that the terms of ordey® arenonlinearfunctions ofe,, and
no restriction as to the order any exists.

Ill. PERTURBATION EXPANSION

In this section we obtain the hydrodynamic profilg
andT®, and the fluxesM () andM{) through ordek=2.
Inserting Eqs(2.22—(2.24) into Eq.(2.10, one obtains

k—1 %\ (K"
k k—1—k' k—1—k'
M Ey,)B+l+ G_Ok’zo (p_*) (IBMEY,Bfl )+2a/M<afl,B+1))

=349 (3.1

In particular,
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1 pn3%=-3, (3.9
(9sM(123+1+E_0(1+ EOS)(ﬁM(a?zlifl_l_ZaM(cvoll,ﬂ+1):J(cle)’ 1 ’

(3.2 s =—3(1+35u6:”). (39

2 1 " " Next we take @,8)=(2,0),(1,2), and(0,4):
IsM gt E_O{(:H'505)(,3Ma,ﬁ71+20‘Ma71,,8+1)

TAO_ 1,00 1_q (3.10
T = (1+ &9)pPIBM 1 +2aM Y 4 1))
@) T4 % us?—§=0, (3.11)
_32), (3.3
7.2 2007

- - (L0 © ao_2 (10
In these equations, one needs to take into account that 7+ 70 M0 T 3Hod T T og =0. (3.12

M) = (TOW Ty T2, @ = [TW2_TO)(TWpA)
k : . .
+TE) T3, and M{=3p™. Inspection of these equa- The solution isT0=1, xEO= — 15 and (L= — 2 Sub-

tions shows that the polynomial structure of the solution corsgitytion into Egs.(3.9) and (3.7 gives u(s%=ulb=0.

responding to the pure Fourier flow is extended to the soluthis completes the determination of the second-degree mo-
tion of orderk. More specifically;T® is a polynomial ins of  ments to first order.

degreek+1, andM{}, 2+ =2, is a polynomial of de- To determine the heat flux to first order, one needs ex-
greea+1(pB/2)+k—1: plicit knowledge of the sixth-degree collisional moments.
Furthermore, the eighth-degree collisional moments are
/e E (ko) k1= needed in the evaluation of the heat flux to second order. The
T (S)_/:O s ' (3.4 algebra is straightforward but rather tedious and here we

’ quote only the final results:

k—1

a+1(BI2)+k-1

(k) — (k,/)aa+1(BI2)+k—1—/ 1
M= 2 pay s ., 89 pr=1- _sy+0(»"), (313

where the coefficients are so far unknown. According to Egs. 128
(3.4) and(3.5), the left-hand side of Eq3.1) is a polynomial Mop=1——sy+ 2= Y+ 0%, (3.19
of degreea+I1[(B—1)/2]+k—1, while the right-hand side 0

is a polynomial of degreer+1(8/2)+k—1. Consequently,

if B=even, the coefficient ofv+ 8/2+k—1 on the right- T*=1+¢€y5+ %327_52<4_68_i3 Y2+ O(9?),
hand side of Eq(3.1) must vanish, and this allows one to 45 3e 31
obtain the coefficientmfyk,'z), for 2a'+B'=2a+ 6. The (319
general solution scheme then proceeds as follows: 16 12
M.;=—5€o| 1+ —y+| — +503.7 72+(’)(*y3)],
R T e P e e I ) | 57 \5¢
(3.6 (3.16
where {,ugk’/)} denotes the set of coefficients [ 206 164 64 )
{uly) 20+ p=d}, andd is even in the first set of Eq. Mos=—3eo| 1+ o7 v+ ¥S+FS+5503 4
(3.6). Consequently, in order to determine completMﬁ% -
one needs to make use of the collisional moméptg, with
2a'+B'<2(2a+ B+k—1). As a matter of fact, to obtain +0(y¥)|. 3.19
the heat flux to second order, one needs to know the colli-

sional moments through the eighth degree. Since, to the best . L .
of our knowledge, only the collisional moments through the quation(3.13 shows thaIESEq(lj) is still valid to second
fifth degree are given in the literatufg], here we have used °rder- Nevertheless; = P;j®=pJ;; to that order. More spe-
a recent evaluation of moments of higher dedrk@. cifically, Eq. (3.14 implies that

Let us first consider the hierarchy3.2). Making
(a,8)=(0,1), one obtaing.{5”= —1/e,, which is equiva-
lent to Eq. (1.3. Next, if (a,8)=(1,0), one obtains p

(1.0)— ich i i ;
mi7 =0, which is equivalent to Eq(1.4). The first non- ; .
trivial result is obtained by makinga(8)=(0.2). In this Although we have used the space variablas mathemati

(10)- o (LO).. cally convenient, let us go back to the actual space coordi-
case, one hag g "=3ug; = —3leo and natez. The nonlinear relationship betwesnand z can be

(1.1 2 (10 obtained from Eqgs(2.7), (3.13, and(3.15:
Moz = T 3M03 (3.7

P,,— 128
2P 2o, (3.18

s(2)=59(2) +sM(2) y+5?(2) "+ O(¥%), (3.19
where we have taken into account thafs'=0. Now we
take (o, 3)=(1,1),(0,3), which yields wheres(®(z) is given by Eq.(2.20, and
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104e2+ 56,5V +5

(2) (0)3
s'9(z)= s,
30e2(1+ €s'?)

S(l)(Z) =

_ L o
260 ’

(3.20 a/q"

Substituting Eq.(3.19 into Eg. (3.15, we obtain the tem-
perature profile

€ 1/2
T(2)=Tpy |1+2—(z—2y)
Ao
312
EO 60 08 1 N 1 N 1 N 1 N 1
1+2—(z—2zy)| —1-3—(z—2p) 0015 0010 0005 0000 0005 0010 0015
104 No No ) y
15 ) €o 12 Y
€| 1+ 2)\—(2—20) FIG. 1. Plot of the ratiay,/q)s as a function ofy at g* =0.01.
0 The solid and dashed lines are the Pagigroximants (1,1) and
(0,2), respectively, derived from EQ.3.16).
+0(7%) (3.2)  stokes equations can be expected. The evaluation of such a

deviation in a dilute gas of Maxwell molecules was the main
motivation of this paper.

Thus, the deviation from the profile given by E4.8) is of
second order, namely,

Y+ O0(7?).

| 5an o

d z?T
9z\ oz 5

On the other hand, sindd,/(—5€,)=q,/q5°, Eq. (3.16
shows that the correction to the Fourier law, Ef6), is of

2
0

We have solved the steady nonlinear Boltzmann equation
by means of a perturbation expansion around the pure Fou-
rier flow state(i.e., g=0). In the latter state, the Navier-
Stokes equations amxact even for arbitrary values of the
thermal gradienf4]. Consequently, the deviations found are
exclusively due to the action of gravity. The main results are
summarized by Eqs(3.16), (3.18, and (3.21). While the
anisotropy of the pressure tensor and the correction to the
temperature profile are of second order, the correction to the

first order. The results predict that when one heats fronjea; fiux is of first order, so that the latter depends on the

above(i.e., €,>0, so thaty>0), the gravitational field pro-

sign of the thermal gradient. This implies an inhibiti@en-

duces an enhancement of the heat flux with respect 10 if§ancementof the heat transport when the gas is heated from
Navier-Stokes value; the opposite effect occurs when onggqqy (above.

heats from below, at least foiy|<1.

Following the same procedure, one might obtain higher,,
correction terms. However, not only the algebra involved
becomes more and more complicated, but its applicabilit
may be limited by the possible asymptotic character of th
series. For illustrative purposes, it is useful to consider Pad

Although our results have been obtained for Maxwell
olecules, we expect that most of them can be extended to
other interaction potentials when the proper temperature de-
endence of the thermal conductivity is taken into account.
or instance, Eqs(3.16, (3.18, and (3.22 can still hold,
] ) ) NS ) sxcept for a change in the numerical coefficients. This ex-
approanantill].. In Fig. 1 we plot the rati@,/q;~, taking  pectation is based on the fact that Monte Carlo simulations
the Padeapproximants (1,1) and (0,2) of Eq3.16, at  of the Boltzmann equation for hard spheres have confirmed
g*=0.01 in the range-0.015< y=<0.015. There is a region the reliability of the solutions for Maxwell molecules in

(|7/=0.01) where both curves practically overlap. This al-cases such as the shear flfi2], the pure Fourier floy13],
lows us to estimate that g* =0.01 the heat flux increases and the Poiseuille flo14].

by a 12% with respect to its Navier-Stokes value if one heats Finally, it is obvious that the effects analyzed here are
from above withe=1, while it decreases by a 7% if one practically irrelevant for gases under terrestrial conditions
heats from below withe= —1. (for instance, in the case of air at room temperature,
g* ~10" 1. The same can be said of recent numerical solu-
tions of the Boltzmann equation showing the existence of the
. . . . __Rayleigh-Beard instability in rarefied gas¢s5]. Neverthe-

In this paper we have investigated the influence of gravity )s/ a%art from its theorgtical interests,J thS isiue addressed in

on the h_eat transport across aflu_ld_m a slab, in the absence is paper may be useful in more complex systems, such as
convection. This means a restriction to values of the Ray-

leigh number less than the critical value, RRg.=1700. viscous liquids or low-density granular media.
Usually, one adopts a hydrodynamic description in the sense
that g explicitly appears in the balance equations, but it is

assumed that the constitutive relations between fluxes and V.G. and A.S. acknowledge partial support from the DGI-
gradients are those of Navier-Stokes; thus only the hydrody€YT (Spain through Grant No. PB94-1021. M.T. is grateful

namic profiles are affected by gravity. Nevertheless, as & the University of Extremadura at Badajoz for its hospital-
matter of principle, a certain deviation from the Navier- ity during a visit.
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